UNDERWATER SOUND LEVELS ASSOCIATED WITH DRIVING 72-inch STEEL PILES AT THE SR 529 EBEY SLOUGH BRIDGE REPLACMENT PROJECT

Prepared by: Jim Laughlin Washington State Department of Transportation Office of Air Quality and Noise 15700 Dayton Avenue North, P.O. Box 330310 Seattle, WA 98133-9710

Table of Contents

List of Tables	ii
List of Figures	i
Executive Summary	
Introduction	2
Project Description	2
Underwater Sound Levels	4
Characteristics of Underwater Sound	4
Methodology	5
Equipment	5
Confined Bubble Curtain Design	7
Results	9
Underwater Sound Levels	9
Conclusions	
References	
Appendix A– Steel Pile Waveform Analysis Figures	27
Pier 3, Pile 1 – No Mitigation, 10-feet Above OHWM	27
Pier 2, Pile 2 – No Mitigation, 230-feet Above OHWM	
Pier 4, Pile 3 – without Bubbles On Start of Drive	29
Pier 4, Pile 3 – with Bubbles On Middle of Drive	30
Pier 4, Pile 3 – with Bubbles Off End of Drive	31
Pier 4, Pile 4 – with Bubbles OFF Start of Drive	32
Pier 4, Pile 4 – with Bubbles On Middle of Drive	33
PiER 4 PIle 4 – Bubbles Off End of Drive	34
PiER 4 PIle 4 – Bubbles ON End of Drive	35
Pier 4, Pile 5 – with Bubbles OFF Start of Drive	36
Pier 4, Pile 5 – with Bubbles On Middle of Drive	37
Pier 4, Pile 5 – with Bubbles OFF Middle of Drive	38
Pier 4, Pile 5 – with Bubbles ON End of Drive	39
Pier 4, Pile 5 – with Bubbles OFF End of Drive	
Pier 4, Pile 6 – with Bubbles OFF Start of Drive	
Pier 4, Pile 6 – with Bubbles On Start of Drive	
Pier 4, Pile 6 – with Bubbles OFF End of Drive	
Pier 4, Pile 6 – with Bubbles On End of Drive	
Appendix B– Pile Driving Logs	

List of Tables

Table 1: Underwater Monitoring Results, SR 529 Ebey Slough Bridge Replacement Project	1
Table 2: Summary of Underwater Sound Levels for the SR 529 Ebey Slough Bridge Replacement Project, 72-inch Steel Piles.	
Table 3: Un-Weighted Airborne Monitoring Results for impact driving 72-inch steel piles	
List of Figures	
Figure 1: Location of SR 529 Bridge Replacement Project.	2
Figure 2: Approximate location of 72-inch piles and hydrophones at the SR 529 Ebey Slough Bridge	2
Replacement Project	3
Figure 3: Near field acoustical monitoring equipment	
Figure 4: Diagram of hydrophone deployment configuration	
Figure 5: Diagram of unconfined bubble curtain	
Figure 6: 1/3 rd Octave frequency distribution for impact pile driving of Pile 1	
Figure 7: Cumulative SEL plot for Pile 1 showing the cumulative plot for SEL values calculated for each pile	
strike (blue) versus the more conservative SEL plot based on the total number of strikes (red- dashed).	11
Figure 8: 1/3 rd Octave frequency distribution for impact pile driving of Pile 2	12
Figure 9: Cumulative SEL plot for Pile 2 showing the cumulative plot for SEL values calculated for each pile	
strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed)	
Figure 10: 1/3 rd Octave frequency distribution for impact pile driving of Pile 3	14
Figure 11: Cumulative SEL plot for Pile 3 showing the cumulative plot for SEL values calculated for each pile	
strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed)	
Figure 12: 1/3 rd Octave frequency distribution for impact pile driving of Pile 4	
Figure 13: Cumulative SEL plot for Pile 4 showing the cumulative plot for SEL values calculated for each pile	
strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed)	
Figure 14: 1/3 rd Octave frequency distribution for impact pile driving of Pile 5	
Figure 15: Cumulative SEL plot for Pile 5 showing the cumulative plot for SEL values calculated for each pile	
strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed)	
Figure 16: 1/3 rd Octave frequency distribution for impact pile driving of Pile 6	
Figure 17: Cumulative SEL plot for Pile 6 showing the cumulative plot for SEL values calculated for each pile	
strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed)	
Figure 18: 1/3 rd Octave frequency distribution for impact pile driving of Pile 2	20
Figure 19: 1/3 Octave frequency distribution for broadband background noise levels Figure 20: Location of airborne noise measurements at the SR 529 Ebey Slough Bridge Project	
Figure 21: Comparison of $1/3^{rd}$ Octave un-weighted airborne frequency distributions for the L_eq/RMS metric	23
with an impact hammer on 72-inch steel piles	24
Figure 22: Waveform analysis of Pile 1 sound pressure levels with no mitigation, 10 feet above OHWM	
Figure 23: Waveform analysis of Pile 2 sound pressure levels 230 feet above the OHWM, midwater	
Figure 24: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive,	20
midwater	29
Figure 25: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive, midwater.	
Figure 26: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive, midwater.	
Figure 27: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive, midwater.	
Figure 28: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive,	2
midwater	33
Figure 29: Waveform analysis of Pile 1 sound pressure levels with 1^{st} , 2^{nd} and 3^{rd} rings air on, Midwater	34
Figure 30: Waveform analysis of Pile 1 sound pressure levels with 1^{st} , 2^{nd} and 3^{rd} rings air on, Midwater	35
Figure 31: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater	
Figure 32: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater	
Figure 33: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater	
Figure 34: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater	
Figure 35: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater	40

Figure 36:	Waveform analysis of Pier 4, Pile 6 sound pressure levels with bubbles off, midwater	41
Figure 37:	Waveform analysis of Pile 1 sound pressure levels with all rings on full for the second time near	
	the end of the drive, midwater.	42
Figure 38:	Waveform analysis of Pile 1 sound pressure levels with all rings off at the end of the drive,	
	midwater	43
Figure 39:	Waveform analysis of Pile 2 sound pressure levels with all bubbles off initial, midwater	44

EXECUTIVE SUMMARY

This technical report describes the data collected during impact pile driving efforts for the SR 529 Ebey Slough Bridge Project between October 2010 and January 2011. A total of six, 72-inch piles were driven with 1-inch walls (Table 1). The peak unattenuated sound levels at ranged between 165 for the pile driven above the Ordinary High Water Mark (OHWM) and 208 for piles driven in the water (Table 1). Only one strike on Pile 6 exceeded the 206 dB threshold. A confined bubble curtain utilizing a single ring at the bottom of the pile was tested as part of this project for its sound reduction properties for the in-water piles at Pier 4. The noise reduction achieved by the unconfined bubble curtain ranged from 16 dB to 30 dB (Table 1).

Background sound levels ranged between 142 dB RMS for broadband measurements and 131 dB RMS for high pass filtered background (Table 1). The confined bubble curtain achieved an average sound reduction of 22 dB.

Table 1: Underwater Monitoring Results, SR 529 Ebey Slough Bridge Replacement Project.

Pier Number	Pile	Date	Mitigation Type	Peak (dB)	Average RMS (dB)	Single Strike SEL (dB)	Average Peak (dB)	Average Noise Reduction (dB)
3	1	10/22/10	None	199	187	171	195	-
2	2	11/10/10	None	165	153	143	163	-
	3	1/11/11	Unconfined Bubble Curtain	214	189	182	208	30
4	4	1/6/11	Unconfined Bubble Curtain	186	170	161	184	16
4 -	5	1/6/11	Unconfined Bubble Curtain	205	185	176	203	22
	6	1/11/11	Unconfined Bubble Curtain	208	189	181	205	26

INTRODUCTION

This technical report presents results of underwater sound levels measured during the driving of six 72-inch steel piles at the SR 529 Ebey Slough Bridge Replacement Project between October 2010 and January 2011.

The six piles were driven in three separate locations on three bridge piers. The water depths are dependent on tidal flux, however for Piers 2 and 3 piles were driven above the Ordinary High Water Mark (OHWM). The project site is located just south of the city of Marysville, Washington. The piles were driven immediately east of the Ebey Slough Bridge on State Route (SR) 529 which is just east of Interstate 5 (Figure 1).

Project Description

- The 72-inch piles were driven to prepare for the construction of the bridge piers.
- The project location is just south of Marysville, Washington (Figure 1).
- Water depths at the hydrophone monitoring locations varied from eight feet to 12 feet deep depending on the tidal flux.
- There was an approximate four foot tidal flux over a six hour period.
- No substantial currents were observed in the area monitored.

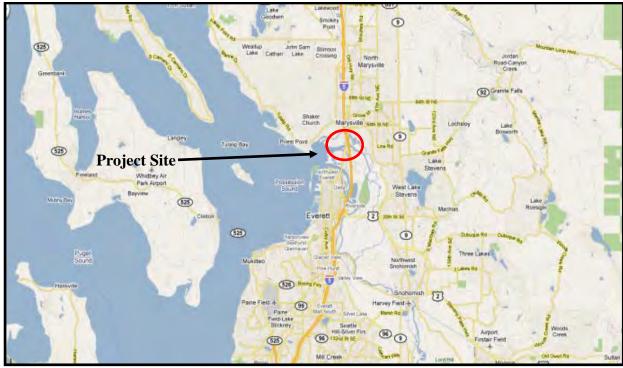


Figure 1: Location of SR 529 Bridge Replacement Project.

Figure 2: Approximate location of 72-inch piles and hydrophones at the SR 529 Ebey Slough Bridge Replacement Project.

○ = 72-inch Steel Pile; • = Hydrophone

UNDERWATER SOUND LEVELS

Characteristics of Underwater Sound

Several descriptors are used to describe underwater noise impacts. Two common descriptors are the instantaneous peak sound pressure level (SPL) and the Root Mean Square (RMS) pressure level during the impulse. The peak SPL is the instantaneous maximum or minimum overpressure observed during each pulse and can be presented in Pascals (Pa) or decibels (dB) referenced to a pressure of 1 micropascal (µPa). Since water and air are two distinctly different media, a different sound level reference pressure is used for each. In water, the most commonly used reference pressure is 1 μ Pa whereas the reference pressure for air is 20 μ Pa. The majority of literature uses peak sound pressures to evaluate barotrauma injury to fish. Except where otherwise noted, sound levels reported in this report are expressed in dB re: 1 µPa. The equation to calculate the sound pressure level is:

Sound Pressure Level (SPL) = $20 \log (p/p_{ref})$, where p_{ref} is the reference pressure (i.e., 1 μ Pa for water)

The RMS level is the square root of the energy divided by the impulse duration. This level, presented in dB re: 1 µPa, is the mean square pressure level of the pulse. It has been used by National Marine Fisheries Service (NMFS) in criteria for judging impacts to marine mammals from underwater impulse-type sounds.

Rise time is used in waveform analysis to describe the characteristics of underwater impulses. Rise time is the time in microseconds (ms) it takes the waveform to go from background levels to absolute peak level.

One-third octave band analysis offers a more convenient way to look at the composition of the sound and is an improvement over previous techniques. One-third octave bands are frequency bands whose upper limit in hertz is $2^{1/3}$ (1.26) times the lower limit. The width of a given band is 23% of its center frequency. For example, the 1/3-octave band centered at 100 Hz extends from 89 to 112 Hz, whereas the band centered at 1000 Hz extends from 890 to 1120 Hz. The 1/3-octave band level is calculated by integrating the spectral densities between the band frequency limits. Conversion to decibels is

dB = 10*LOG (sum of squared pressures in the band)

Sound levels are often presented for 1/3-octave bands because the effective filter bandwidth of mammalian hearing systems is roughly proportional to frequency and often about 1/3-octave. In other words, a mammal's perception of a sound at a given frequency will be strongly affected by other sounds within a 1/3-octave band around that frequency. The overall level (summing all frequencies) of a broadband sound exceeds the level in any single 1/3-octave band.

METHODOLOGY

Equipment

Underwater sound levels were measured near the pile (near field) using one Reson TC 4013 hydrophone deployed on a nylon cord off the side of the Ebey Slough bridge. The hydrophone was positioned at a distance of between 10 and 74 meters from the individual pile being monitored and at either mid-water level or one foot from the bottom depending on the stage of tidal flux. The measurement system includes a Brüel and Kjær Nexus type 2692 4-channel signal conditioner, which kept the high underwater sound levels within the dynamic range of the signal analyzer (Figure 3). The output of the Nexus signal conditioner is received by a Dactron Photon 4-channel signal spectrum analyzer that is attached to an Itronix GoBook II laptop computer (Figure 3).

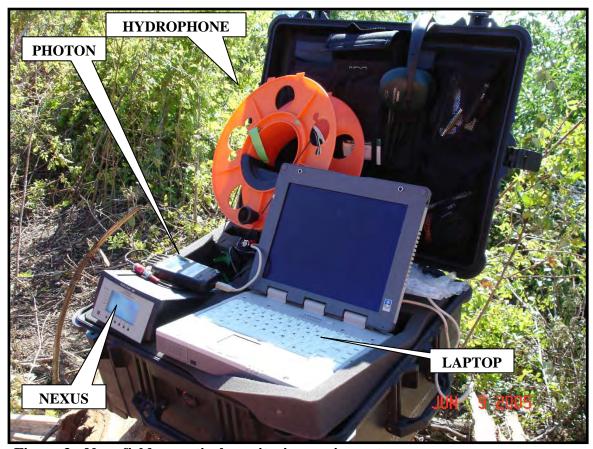


Figure 3: Near field acoustical monitoring equipment

The waveform of the pile strikes along with the number of strikes, overpressure minimum and maximum, absolute peak values, and RMS sound levels, integrated over 90% of the duration of the pulse, were captured and stored on the laptop hard drive for subsequent signal analysis. The system and software calibration is checked annually against a NIST traceable standard.

Calibration

The operation of the near field hydrophones were checked daily in the field using a GRAS type 42AC high-level pistonphone with a hydrophone adaptor. The pistonphone signal was 146 dB re: 1 µPa. The pistonphone signal levels produced by the pistonphone and measured by the measurement system were within 1.0 dB and the operation of the system was judged acceptable over the study period.

Signal analysis software provided with the Photon was set at a sampling rate of one sample every 41.7 µs (24,000 Hz). This sampling rate is more than sufficient for the bandwidth of interest for underwater pile driving impact sound and gives sufficient resolution to catch the peaks and other relevant data. The anti-aliasing filter included in the Photon also allows the capture of the true peak.

Due to the high degree of variability between the absolute peaks for each pile strike, an average peak and RMS value is computed along with the standard deviation (s.d.) to give an indication of the amount of variation around the average for each pile.

Hydrophone Location

The location of the hydrophones is determined by allowing a clear line of sight between the pile and the hydrophone, with no other structures nearby. The distance from the pile to the hydrophone location was measured using a Bushnell Yardage Pro rangefinder. The hydrophone was attached to a weighted nylon cord anchored with a five-pound weight. The cord and hydrophone cables were lowered off the side of the bridge (Figure 4). For those piles driven above the OHWM the hydrophone was located in the water and as close as possible to the pile.

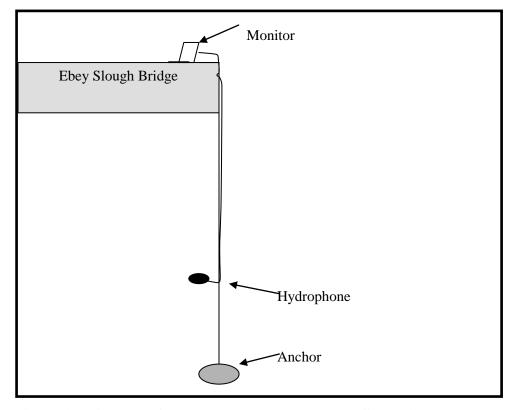


Figure 4: Diagram of hydrophone deployment configuration.

SEL

An estimation of individual SEL values was calculated for each pile strike by calculating a 1second L_{eq} for each individual pile strike. As can be seen in equation 1 below the SEL is essentially a subset of the LEQ function. When the time interval for the Leq is set to one second it is equal to the SEL.

$$L_{eq,T} = 10 \lg \left(\frac{1}{T} \int_0^T \frac{p^2(t)}{p_0^2} dt \right) dB = SEL = 10 \lg \left(\int_{-\infty}^\infty \frac{p^2(t)}{p_0^2} dt \right) dB$$
 (eq. 1)

Through negotiations with the National Marine Fisheries (NMFS) it was determined that a cumulative threshold of 204 dB_{SE}L would be used as the threshold for this project instead of the standard interim threshold of 187 dB_{SEL}.

Pier 3

A vibratory hammer was used to drive three piles welded together to a tip depth of approximately 220 feet. The pile was then driven an additional two feet to bearing depth with a diesel impact hammer. The diesel impact driver was a diesel hammer rated to a maximum of 246,390 foot pounds. This is the maximum energy output for the diesel hammer that can only be sustained for a few seconds at a time. Actual operation of the diesel hammer is more likely to be approximately 50% to 70% of this maximum energy for most pile installations.

Pier 2

A vibratory hammer was used to drive two piles welded together to approximately 183 feet depth. The pile was then spliced with a third pile and driven the additional 160 feet with an impact hammer.

Pier 4

A vibratory hammer was used to drive three piles welded together to a tip depth of approximately 228.5 feet. The pile was then driven an additional two feet to bearing depth with a diesel impact hammer. All four 72-inch piles were monitored for Pier 4.

Substrate

The substrate consisted of relatively soft sandy silt. Piles driven were open-ended hollow steel piles, 72-inches in diameter with a 1-inch wall thickness. All measurements were made between 10 meters and and 74 meters from the pile, midwater depth.

Confined Bubble Curtain Design

A confined bubble curtain with a single ring at the bottom was tested as a part of this project (Figure 5). The bubble curtain is placed around the pile being driven with the ring on the

substrate. The compressor was attached with a separate hose on each half of the ring and maintained a flow of 32.91 cubic feet per minute per linear foot of pipe. The bubble curtain was constructed using 3-inch diameter Schedule 80 PVC pipe and 1/16-inch diameter air holes at 3/4inch on center in four rows. The manifold was attached to a square steel frame which weighted it to the substrate. The original drawing (Figure 5) indicates that there were four air filled bumpers/spacers on the inside of the ring to act as resilient pile guides. However, in the field these were not used because the ring was able to maintain adequate distance from the pile during operation.

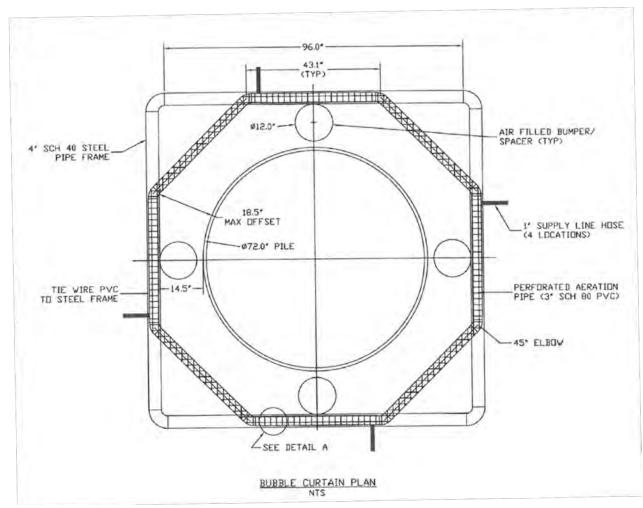


Figure 5: Diagram of unconfined bubble curtain.

RESULTS

Underwater Sound Levels

There are many interesting attributes of the waveforms of different piles and mitigation types that will become evident (Figures 6 to 17). A brief description of the piles and pile types that were tested are as follows:

Pier 3. Pile 1

All piles were driven with a diesel hammer. Pile 1 was driven 10 feet above the OHWM in water saturated soils. No mitigation was used on this pile because it was driven above the water line.

The results of monitoring for Pile 1(Table 2) indicates:

- The highest absolute peak from the hydrophone at 4 feet (midwater) is 199 dB_{peak} and did not exceed the 206 dB_{peak} interim threshold.
- The average RMS at 4 feet depth is 180 dB_{RMS}.
- The highest single strike Sound Exposure Level (SEL) for the peak strike at 4 feet water depth is 171 dB_{SEL}.

The waveform analysis for Pile 1 indicates that there was a relatively short delay between the initial onset of the impulse and the unattenuated absolute peak (rise time of 0.7 milliseconds) (Appendix A, Figure 9).

The $1/3^{rd}$ Octave frequency distribution for Pile 1 (Figure 6)range between 125 Hz and 500 Hz and there are potentially three dominant frequencies at 125 Hz, 250 Hz and 500 Hz.

The attenuated cumulative SEL was calculated based on an individual single strike SEL calculated for each pile strike and calculated based on the total number of strikes and the highest single strike SEL value (Table 2). The cumulative SEL based on the total number of strikes and the highest single strike SEL value was 194 dBSEL_{cum} after 192 strikes. The cumulative SEL calculated based on the SEL calculated for each pile strike was 168 dBSEL_{cum}. Therefore, the cumulative SEL using either method did not exceed the 204 dBSEL_{cum} threshold set by the US Fish and Wildlife in the Biological Opinion for this project. It would have conservatively required 2239 strikes for Pile 1 to exceed this threshold. This estimate is based on the total number of strikes per day and the highest single strike recorded for the same day.

The cumulative SEL values calculated for each individual pile strike (Figure 7, blue line) were compared against the more conservative cumulative SEL calculation based on the total number of pile strikes (red dashed line). The two methods differ on average by about 44 decibels with the individual strike method being substantially lower.

Table 2: Summary of Underwater Sound Levels for the SR 529 Ebey Slough Bridge Replacement Project, 72-inch Steel Piles.

Pile	Date	Hydrophone Depth (feet)	Mitigation Type	Highest Absolute Peak (dB)	Avg. RMS \pm s.d. (Pascals)	$egin{aligned} \mathbf{Avg.} \ \mathbf{dB_{RMS}} \end{aligned}$	Total # of Strikes	Avg. Peak ± s.d. (Pascals)	$\begin{array}{c} \mathbf{Avg.} \\ \mathbf{dB_{peak}} \end{array}$	Avg. Reduction ² (dB)	Highest Single Strike SEL (dB)	Rise Time (millesec.)	Cumulative SEL (dB)
1	10/22/10	4	None ⁵	199 ¹	970 ± 250	180	192	5934 ± 1633	195	-	171	0.7	168
2	11/10/10	8	None ⁵	165	32 ± 5	150	276 ⁴	142 ± 24	163	-	143	2.8	142
			Bubbles Off	214	2742 + 550	189	26	25005 + 7727	208	-	182	0.3	-
3	1/11/11	10	Bubbles On	177¹	223 + 161	167	121	762 + 1178	178	30	158	7.1	155
			Bubbles Off	200	689 + 141	177	26	5794 + 1832	195	-	168	7.1	-
			Bubbles Off	177	118 + 31	161	22	475 + 170	174	-	155	2.9	-
4 1/6/11			Bubbles On	173	96 + 13	160	243	334 + 74	170	14	151	2.3	151
	1/6/11	4	Bubbles Off	186 ¹	303 + 56	170	22	1567 + 301	184	-	161	1.1	-
			Bubbles On	179	42 + 40	152	88	195 + 192	166	18	155	1.3	-
			Bubbles Off	205	1694 + 227	185	22	14067 + 1731	203	-	176	0.6	-
			Bubbles On	181	238 + 61	168	136	769 + 474	178	25	161	4.5	156
5	1/6/11	14	Bubbles Off	184	785 + 328	178	29	5221 + 2103	194	-	159	0.3	-
			Bubbles On	177	206 + 23	166	73	584 + 119	175	19	156	3.1	-
			Bubbles Off	187	878 + 317	179	25	7328 + 2974	197	-	162	0.4	-
6 1/11/11			Bubbles Off	208	2837 + 413	189	21	18157 + 2705	205	-	181	0.7	-
	1/11/11	10	Bubbles On	172 ¹	133 + 13	162	109	434 + 37	173	32	151	2.6	140
	1/11/11	10	Bubbles Off	181	672 + 155	177	19	4729 + 1484	193	-	156	0.6	-
			Bubbles On	173	141 + 24	163	124	474 + 100	174	19	151	1.6	-
								I	Average:	22			

^{1 —} Peak represents underpressure.
2 — Average reduction is calculated by subtracting the average peak sound level for each mitigation strategy employed from the average peak unmitigated Pile 1.
3 — A cumulative SEL of 204 dB was agreed upon between the Services and WSDOT for this project on the 72-inch piles.
4 — Not all pile strikes monitored once it was clear that the cumulative SEL would only be exceeded after over a million pile strikes.
5 — Pile driven above the Ordinary High Water Mark (OHWM).

Figure 6: 1/3rd Octave frequency distribution for impact pile driving of Pile 1.

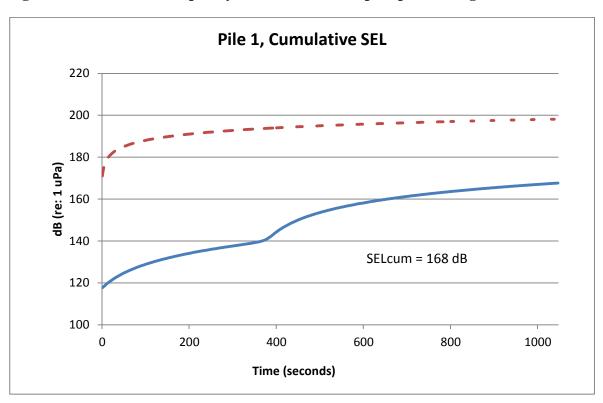


Figure 7: Cumulative SEL plot for Pile 1 showing the cumulative plot for SEL values calculated for each pile strike (blue) versus the more conservative SEL plot based on the total number of strikes (red-dashed).

Pier 2, Pile 2

Pile 2 was driven at Pier 2 approximately 230 feet above the OHWM in saturated soils. The hydrophone for Pile 2 was located 243 feet from the pile. No bubble curtain was used.

The results of monitoring for Pile 2 indicate (Table 2):

- The highest absolute peak at the hydrophone at 8 feet (midwater) is 165 dB_{peak} and did not exceed the 206 dB_{peak} interim threshold.
- The average RMS at 8 feet depth is 150 dB_{RMS}.
- The highest single strike SEL for the peak strike at 8 feet water depth is 143 dB_{SEL}.

The attenuated cumulative SEL did not exceed the 204 dBSEL $_{cum}$ threshold after 276 strikes and would not have exceeded until the pile was struck for 1,258,925 strikes (Table 2). The SEL was estimated for each individual pile strike by calculating a 1-second SEL for each pile strike. Plots of the cumulative SEL values for each pile strike (Figure 9, blue line) compares the calculated cumulative SEL based on the number of strikes (Figure 9, red dashed line). The two methods differ on average by about 31 decibels with the individual strike method being substantially lower. Neither method of calculating the cumulative SEL exceeded the 204 dBSEL $_{cum}$ threshold.

The dominant $1/3^{rd}$ Octave frequency distribution for Pile 2 range between 250 Hz and 400 Hz with a peak at 250 Hz (Figure 8). There is a clear dominant lower frequency with relatively little energy at the lowest and highest frequencies. This is likely due to Pile 2 being driven 230 feet above the OHWM, which means that virtually all of the sound entering the water at the hydrophone is being transmitted through the substrate. The substrate will quickly attenuate the higher frequencies and some of the lower frequencies due to the compression of the substrate around the pile and over this distance.

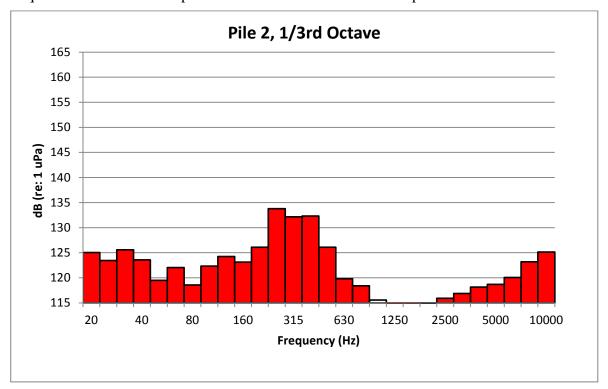


Figure 8: 1/3rd Octave frequency distribution for impact pile driving of Pile 2.

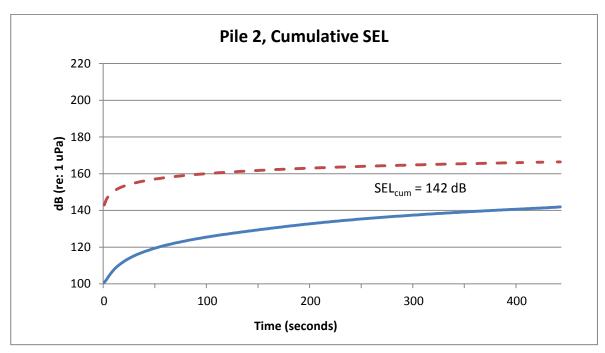


Figure 9: Cumulative SEL plot for Pile 2 showing the cumulative plot for SEL values calculated for each pile strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed).

Pier 4, Pile 3

Pile 3 was driven at Pier 4 in approximately seven feet of water with the hydrophone 33 feet from the pile. The bubble curtain was used during the impact drive with the bubbles turned off briefly at the start of the drive, on in the middle of the drive and then off briefly at the end of the drive.

The results of monitoring for Pile 3 indicate (Table 2):

- The highest absolute peak of 214 dB_{peak} was with the bubbles turned off, the hydrophone 10 feet deep and one foot from bottom.
- The average RMS at 10 foot depth ranged from 177 dB_{RMS} to 189 dB_{RMS} with the bubbles off and was 167 dB_{RMS} with the bubbles turned on.
- The highest single strike SEL for the peak strike was 168 dB_{SEL} with the bubbles turned off.

The attenuated cumulative SEL of 155 dBSEL $_{cum}$ did not exceed the 204 dBSEL $_{cum}$ threshold after 121 strikes (Table 2). The SEL was estimated for each individual pile strike while the bubble curtain was active by calculating a 1-second SEL for each pile strike. Plots of the cumulative SEL values for each pile strike (Figure 11, blue line) compares this against the calculated cumulative SEL based on the number of strikes (Figure 11, red dashed line). The two methods differ on average by about 32 decibels with the individual strike method being substantially lower. Neither cumulative SEL exceeded the 204 dBSEL $_{cum}$ threshold.

The $1/3^{rd}$ Octave frequency distribution for Pile 3 shows that the dominant frequency was 50 Hz and a secondary lesser peak at 200 Hz (Figure 10). Most of the energy is below 500 Hz.

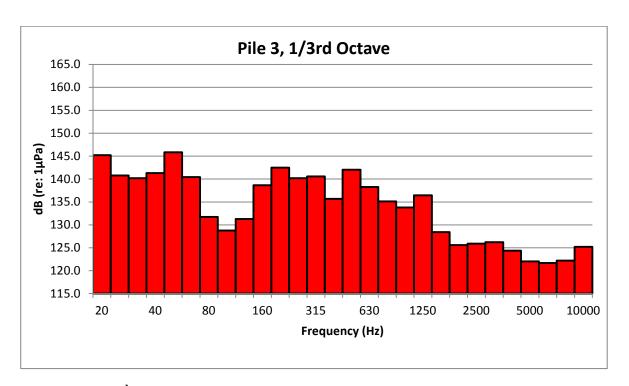


Figure 10: 1/3rd Octave frequency distribution for impact pile driving of Pile 3.

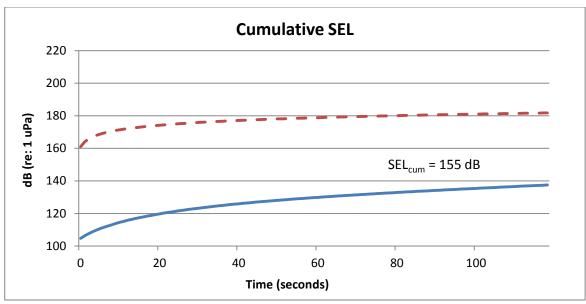


Figure 11: Cumulative SEL plot for Pile 3 showing the cumulative plot for SEL values calculated for each pile strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed).

Pile 4 was driven at Pier 4 in approximately six feet of water. The hydrophone for Pile 4 was 49 feet from the pile in 15 feet of water, one foot from the bottom. The bubble curtain was used during the impact drive of Pile 3 with the bubbles turned off briefly at the start of the drive, on in the middle of the drive, off briefly near the end of the drive and then on again at the end of the drive.

The results of monitoring for Pile 4 indicates (Table 2):

- The highest absolute peak at the hydrophone at 14 feet depth (one foot from bottom) is 186 dB_{peak}.
- The average RMS at 14 feet depth ranged from 161 dB_{RMS} to 170 dB_{RMS} with the bubbles off and between 152 dB_{RMS} and 160 dB_{RMS} with the bubbles on.
- The highest single strike SEL for the peak strike at 14 feet water depth is 161 dB_{SEL} with the bubbles off.

The $1/3^{\text{rd}}$ Octave frequency distribution for Pile 4 shows that the dominant frequency was 250 Hz and a lesser secondary peak at 40 Hz (Figure 12). Most of the energy was below 400 Hz.

The cumulative SEL of 151 dBSEL_{cum} did not exceed the 204 dBSEL_{cum} threshold after 331 strikes (Table 2). The attenuated SEL was estimated for each individual pile strike while the bubble curtain was active by calculating a 1-second SEL for each pile strike. The cumulative SEL value for each pile strike differs on average by about 43 decibels with the individual strike method (Figure 13). Neither cumulative SEL exceeded the 204 dBSEL_{cum} threshold.

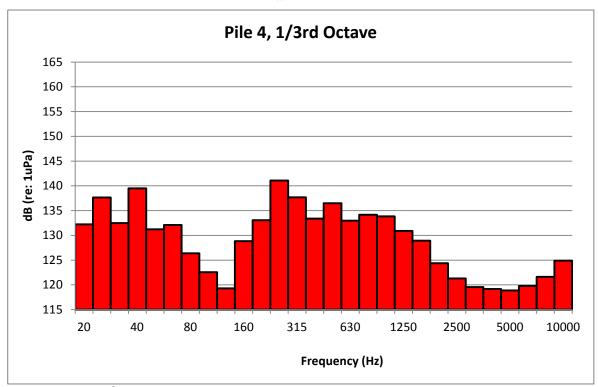


Figure 12: 1/3rd Octave frequency distribution for impact pile driving of Pile 4.

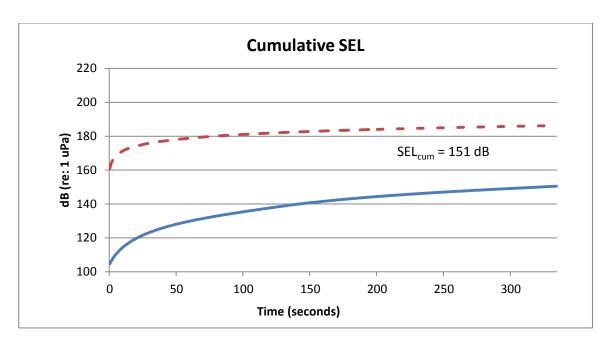


Figure 13: Cumulative SEL plot for Pile 4 showing the cumulative plot for SEL values calculated for each pile strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed).

Pier 4. Pile 5

Pile 5 was driven at Pier 4 in approximately seven feet of water. The hydrophone for Pile 5 was 33 feet from the pile. The bubble curtain was used during the impact drive of Pile 5 with the bubbles turned off briefly at the start of the drive, on in the middle of the drive, and then off briefly at the end of the drive.

The results of monitoring for Pile 5 (Table 2) indicate:

- The highest absolute peak at the 10 foot hydrophone depth (one foot from bottom) was 205 $dB_{\text{peak}}. \\$
- The average RMS at 10 feet depth ranged between 178 dB_{RMS} to 179 dB_{RMS} with the bubbles off and between was 166 dB_{RMS} 168 dB_{RMS} and with the bubbles turned on.
- The highest single strike SEL for the peak strike at 10 feet water depth is 162 dB_{SEL}.

The 1/3rd Octave frequency distribution for Pile 5 indicates that the dominant frequency was 20 Hz and a lesser secondary peak at 200 Hz (Figure 14). Most of the energy is below 315 Hz.

The cumulative SEL of 156 dBSEL_{cum} did not exceed the 204 dBSEL_{cum} threshold after 209 strikes (Table 2). The SEL was estimated for each individual pile strike while the bubble curtain was active by calculating a 1-second SEL for each pile strike. The cumulative SEL values for each pile strike (Figure 15, blue line) differ by about 52 decibels with the individual strike method (red dashed line). Neither cumulative SEL exceeded the 204 dBSEL_{cum} threshold.

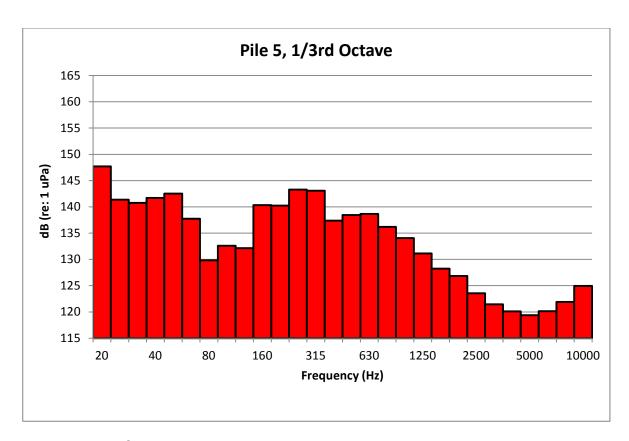


Figure 14: 1/3rd Octave frequency distribution for impact pile driving of Pile 5.

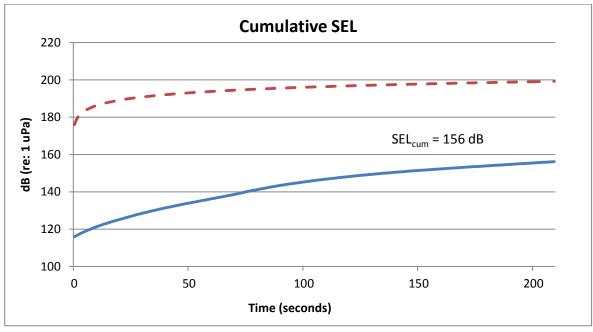


Figure 15: Cumulative SEL plot for Pile 5 showing the cumulative plot for SEL values calculated for each pile strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed).

Pile 6 was driven at Pier 4 in approximately seven feet of water. The hydrophone for Pile 6 was 49 feet from the pile and one foot from the bottom. The bubble curtain was used during the impact drive of Pile 6 with the bubbles turned off briefly at the start of the drive, turned on and then off in the middle of the drive and back on at the end of the drive.

The results of monitoring for Pile 6 (Table 2) indicate:

- The highest absolute peak at the hydrophone at 10 feet depth (one foot from bottom) is 208 dB_{peak}.
- The average RMS at 10 feet depth ranged between 177 dB_{RMS} to 189 dB_{RMS} with the bubbles off and from 162 dB_{RMS} and 163 dB_{RMS} with the bubbles turned on.
- The highest single strike SEL for the peak strike at 10 feet water depth is 181 dB_{SEL}.

The $1/3^{rd}$ Octave frequency distribution for Pile 6 indicates that the dominant frequency was 800 Hz (Figure 16). Most of the energy is below 1000 Hz.

The cumulative SEL of 140 dBSEL_{cum} did not exceed the 204 dBSEL_{cum} threshold after 233 strikes. The SEL was estimated for each individual pile strike while the bubble curtain was active by calculating a 1second SEL for each pile strike. The cumulative SEL values for each pile strike (Figure 17, blue line) differ by about 72 decibels with the individual strike method (red dashed line). Neither cumulative SEL exceeded the 204 dBSEL_{cum} threshold.

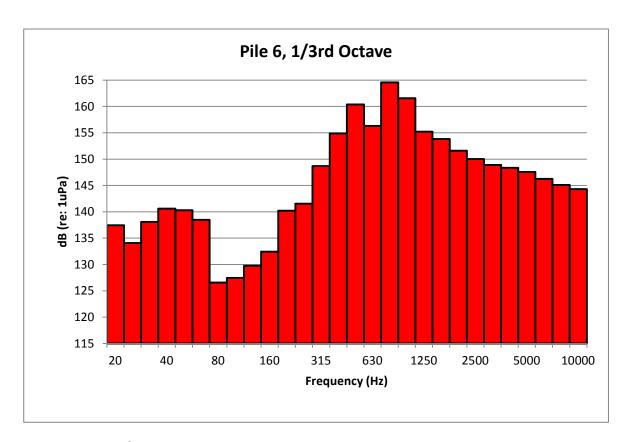


Figure 16: 1/3rd Octave frequency distribution for impact pile driving of Pile 6.

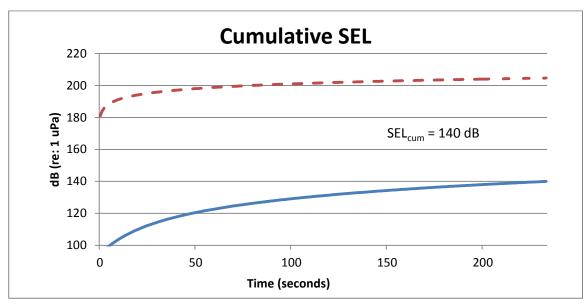


Figure 17: Cumulative SEL plot for Pile 6 showing the cumulative plot for SEL values calculated for each pile strike (blue) versus the more conservative SEL plot based on the number of strikes (red-dashed).

Pier 4, Vibratory Measurements

One pile was monitored during vibratory pile driving at Pier 4. The hydrophone was 33 feet from the pile in approximately 10 feet of water. No bubble curtain was used.

The highest measured absolute peak for vibratory driving was 182 dB_{peak}. The 30-second RMS values ranged from 148 to 166 dB_{RMS}. The overall average RMS is 155 dB_{RMS}.

The 1/3rd Octave frequency distribution for the pile driven using a vibratory hammer indicates that the dominant frequencies occur at about 20 Hz and a second peak at 1000 Hz (Figure 18). The secondary peak at 1000 Hz could have been due to turbulence from water movement past the piles upstream from the hydrophone. The substrate will quickly attenuate the higher frequencies and some of the lower frequencies due to the compression of the substrate around the pile.

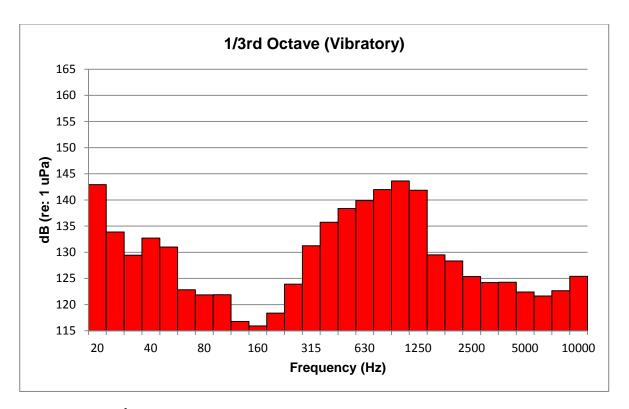


Figure 18: 1/3rd Octave frequency distribution for impact pile driving of Pile 2.

Background Measurements

Broadband Root Mean Square (RMS) (background) noise levels are reported in terms of the 30-second average continuous sound level and have been computed from the Fourier transform of pressure waveforms in 30-second time intervals. Although the methodology did not strictly follow the NOAA guidance on measuring background sound levels underwater, background RMS values were measured for eight minutes prior to pile driving activities on October 22, 2010. Average broadband (20 Hz to 10000 Hz) RMS background levels were 142 dB_{RMS}. The $1/3^{rd}$ Octave band frequency distribution for the background noise measurements indicates a curious high frequency component between about 1,000 and 10,000 Hz (Figure 19). When a high pass filter was applied to remove all frequencies below 1,000 Hz, as the NOAA guidance recommends, background levels were lowered to 131 dB RMS.

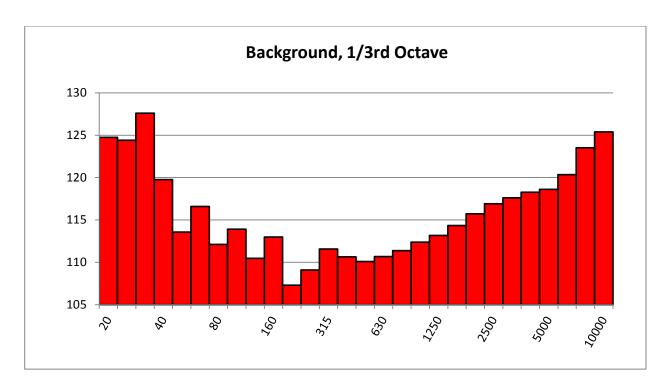


Figure 19: 1/3rd Octave frequency distribution for broadband background noise levels.

SEL

SEL was calculated for the single highest absolute peak strike for each pile and for each individual pile strike. None of the piles monitored exceeded threshold of 204 dB_{SEL} set for this project within the BO during a single day (12 hour period) using either method of calculation. The highest cumulative SEL calculated using the total number of strikes and the single strike SEL was 204 dBSEL_{cum} for Pile 6. The highest cumulative SEL calculated using the SEL values for each individual pile strike was 168 for Pile 1.

Rise Time

Yelverton (1973) indicated rise time was the cause of injury. According to Yelverton, the closer the peak is to the front of the impulse wave the greater the chance for injury. In other words, the shorter the rise time the higher the likelihood for effects on fish. In all steel piles without effective mitigation, the rise times were relatively short. Piles with mitigation had relatively long rise times.

Airborne Noise Measurements

Un-weighted airborne impact pile driving measurements at the SR 529 Ebey Slough Bridge Replacement project were collected during impact pile driving during the month of January 2011 on two 72-inch diameter steel piles driven with an APE D-100-13 impact hammer. Airborne noise levels use the acoustic reference pressure of 20 microPa.

The airborne noise levels are measured in terms of the 5-minute average continuous sound level (5-minute L_{eq}):

$$L_{eq} = 10 \log \left(\frac{1}{T} \int_{T} p(t)^{2} dt \right)$$

Where p(t) is the acoustic overpressure, T=5 minutes and 0 < t < T. RMS values are calculated by integrating the sound pressure averaged over some time period, in this case 5-minutes, in a similar way that the L_{eq} values are calculated. Therefore, in this instance, the 5-minute L_{eq} is the same as the RMS sound pressure level over a 5-minute period.

The 5-minute L_{eq} and L_{max} levels were measured with no weighting applied. The un-weighted airborne noise levels (L_{eq}/RMS), standardized to a distance of 50 feet to ranged between 98 and 99 dB (Table 3). The location where the measurements were collected was just northeast of Pier 4 and east of the bridge (Figure 20).

Table 3: Un-Weighted Airborne Monitoring Results for impact driving 72-inch steel piles.

Pier #	Distance To Pile (feet)	Measured Leq/RMS (dB)	Standardized Leq/RMS To 50 feet (dB)	Measured Lmax (dB)	Standardized Lmax To 50 feet (dB)
		88.3	99	91.3	102
4	163	87.7	98	89.6	100
4		88.8	99	99.7	110
		Average:	99	Average:	106
		103	99	106	102
2	33	105	101	110	106
		106	102	109	105
		Average:	101	Average:	105

Figure 20: Location of airborne noise measurements at the SR 529 Ebey Slough Bridge Project. = 72-inch Steel Pile; • = Airborne Microphone

The 1/3rd octave frequency distribution for the un-weighted airborne noise measurements indicate that the frequency distributions between measurements and between piles are relatively similar (Figure 21). In most cases the dominant energy occurs at approximately at 100 Hz with most of the sound energy occurring below 100 Hz. In a few instances there was a dominant frequency measured at around 1,000 Hz. This could have been produced by the occasional ringing of the pile during impact driving. In all cases the sound energy drops off sharply above 1,000 Hz.

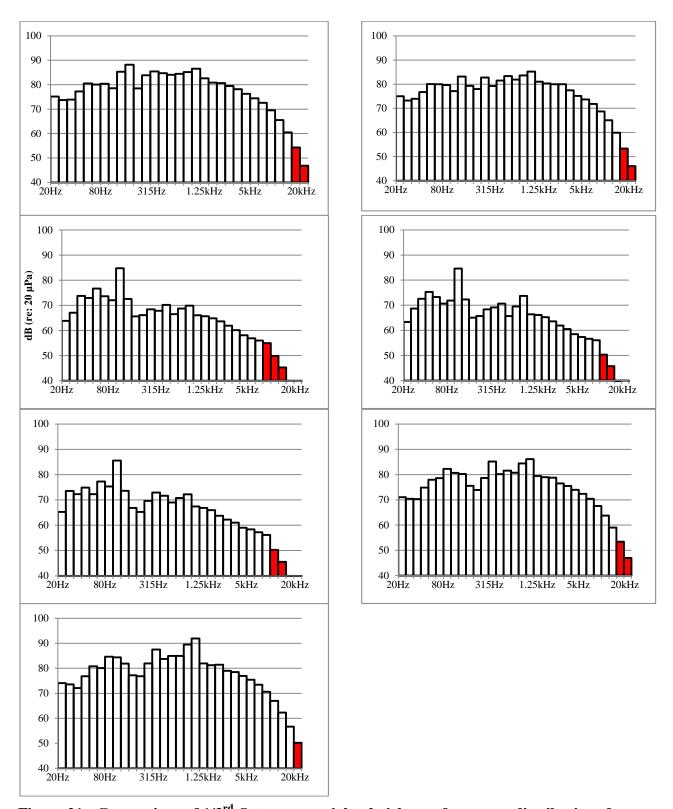


Figure 21: Comparison of $1/3^{rd}$ Octave un-weighted airborne frequency distributions for the L_eq/RMS metric with an impact hammer on 72-inch steel piles.

CONCLUSIONS

A total of six 72-inch steel piles were monitored on three separate piers representing both inwater and above ordinary high water pile driving. Underwater and airborne noise measurements were collected for impact and vibratory pile driving.

- Peak underwater mitigated sound levels for piles driven in water ranged between 172 dB_{Peak} and 181 dB_{Peak}.
- Average mitigated RMS levels ranged between 152 dB_{RMS} and 168 dB_{RMS}.
- Cumulative Sound Exposure Levels (SEL) were calculated both for individual pile strikes and then summed as well as calculated using the peak strike SEL value and the total number of strikes.
- The difference between the two methods of calculating the cumulative SEL averaged between 32 dB and 72 dB with the method of calculating the SEL value for each individual pile strike being substantially lower.
- Neither method resulted in a cumulative SEL value that exceeded the 204 dB_{SEL} threshold set by the Services for this project.
- The bubble curtain performed well achieving an average of 22 dB of noise reduction with a range of between 14 and 32 dB. It is possible that the very soft substrate at this location provided some additional attenuation of the sound energy through the substrate and so provided some assistance to the bubble curtain.
- Average RMS levels for unweighted airborne noise levels from impact driving 72-inch steel piles ranged from 99 to $101~dB_{RMS}$ when standardized to a distance of 50 feet.

REFERENCES

Yelverton, John T., Donald R. Richmond, E. Royce Fletcher, and Robert K. Jones. 1973. Safe Distances from Underwater Explosions for Mammals and Birds. Lovelace Foundation for Medical Education and Research AD-766 952, Prepared for Defense Nuclear Agency.

APPENDIX A- STEEL PILE WAVEFORM ANALYSIS FIGURES

Pier 3, Pile 1 – No Mitigation, 10-feet Above OHWM

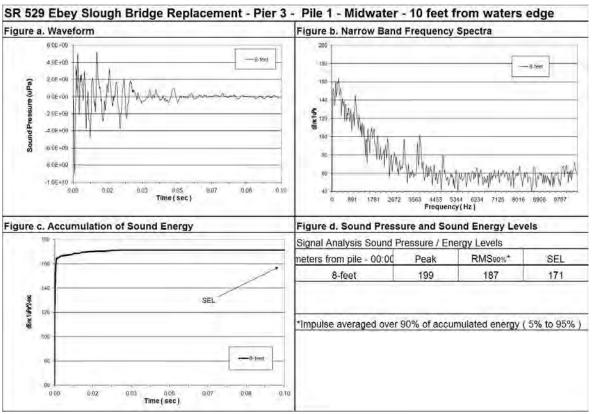


Figure 22: Waveform analysis of Pile 1 sound pressure levels with no mitigation, 10 feet above OHWM.

Pier 2, Pile 2 – No Mitigation, 230-feet Above OHWM

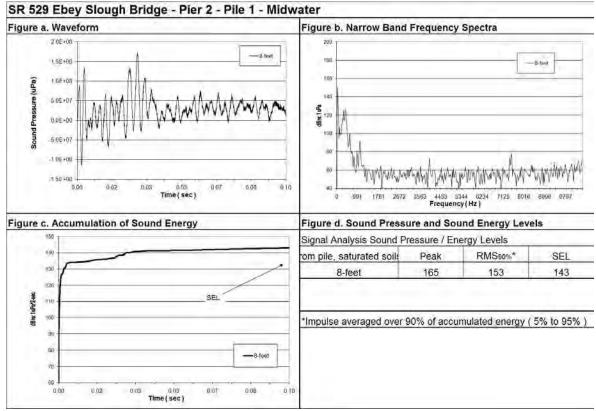


Figure 23: Waveform analysis of Pile 2 sound pressure levels 230 feet above the OHWM, midwater.

Pier 4, Pile 3 – without Bubbles On Start of Drive

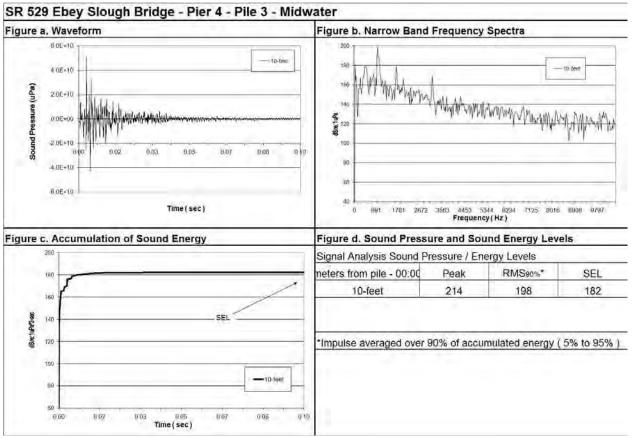


Figure 24: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive, midwater.

Pier 4, Pile 3 – with Bubbles On Middle of Drive

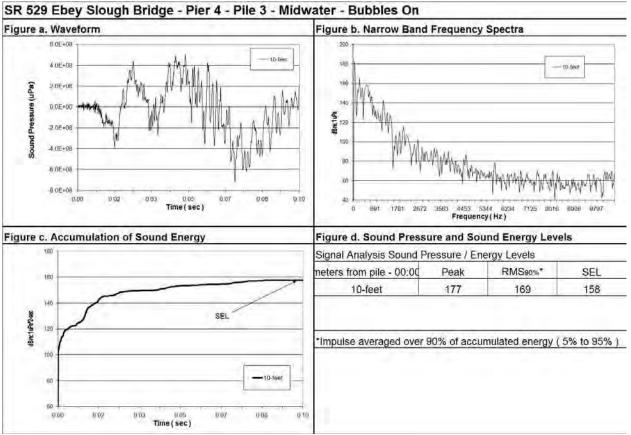


Figure 25: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive, midwater.

Pier 4, Pile 3 – with Bubbles Off End of Drive

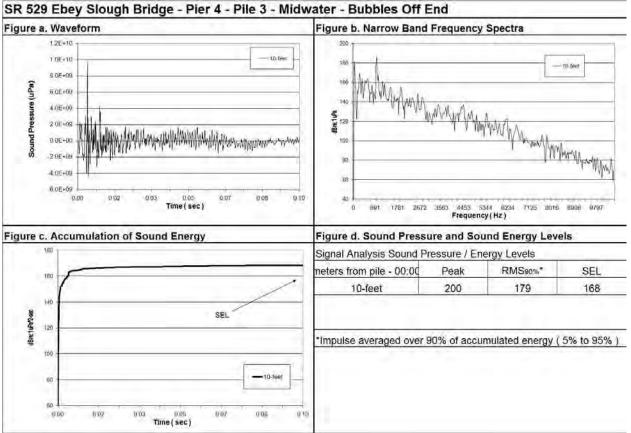


Figure 26: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive, midwater.

Pier 4, Pile 4 – with Bubbles OFF Start of Drive

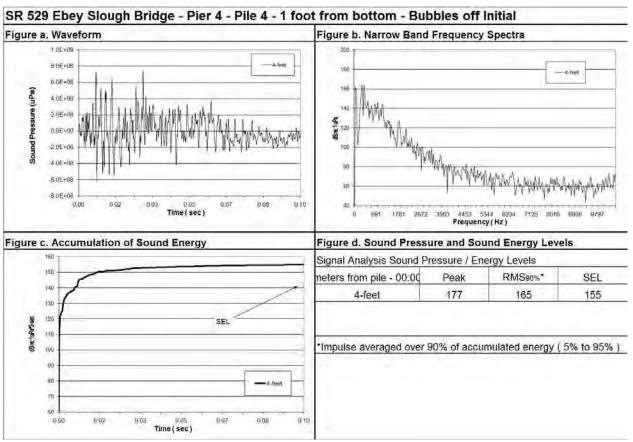


Figure 27: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive, midwater.

Pier 4, Pile 4 – with Bubbles On Middle of Drive

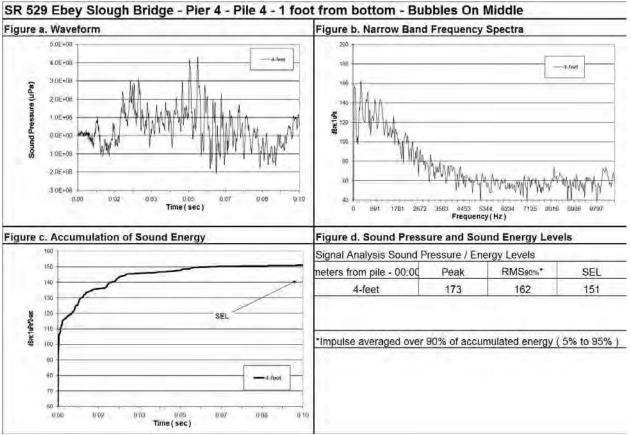


Figure 28: Waveform analysis of Pier 4, Pile 3 sound pressure levels with bubbles off first part of drive, midwater.

PiER 4 PIle 4 – Bubbles Off End of Drive

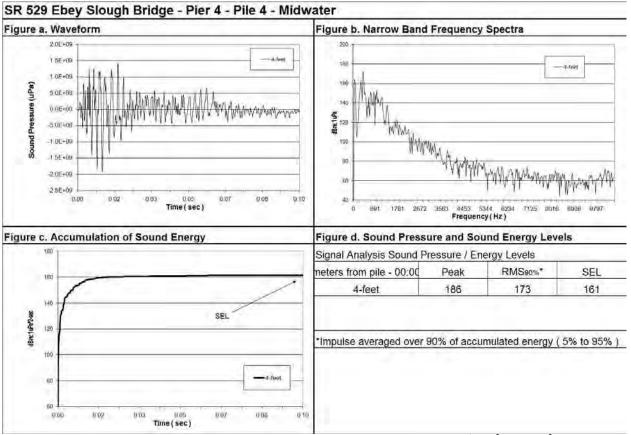


Figure 29: Waveform analysis of Pile 1 sound pressure levels with 1st, 2nd and 3rd rings air on, Midwater.

PiER 4 PIle 4 – Bubbles ON End of Drive

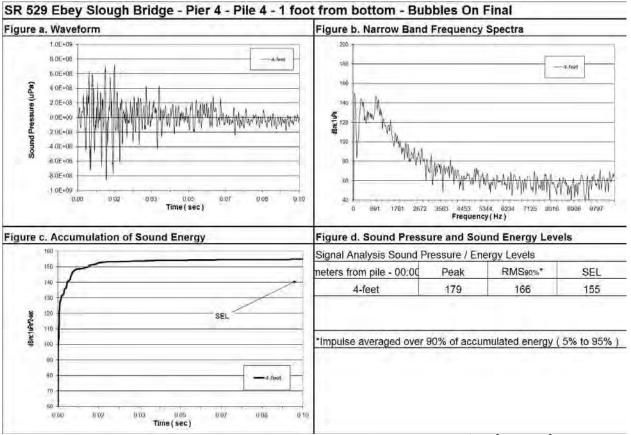


Figure 30: Waveform analysis of Pile 1 sound pressure levels with 1st, 2nd and 3rd rings air on, Midwater.

Pier 4, Pile 5 – with Bubbles OFF Start of Drive

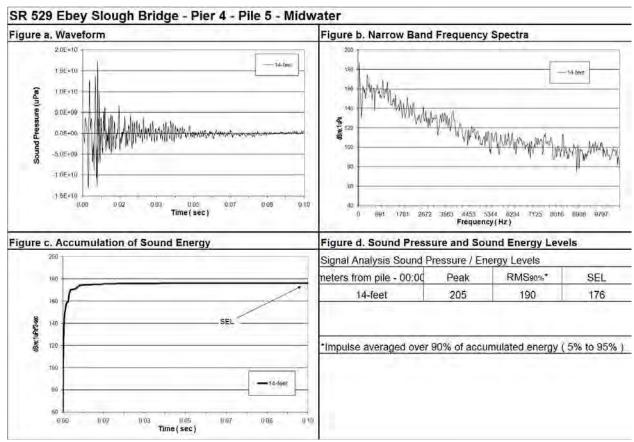


Figure 31: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater.

Pier 4, Pile 5 – with Bubbles On Middle of Drive

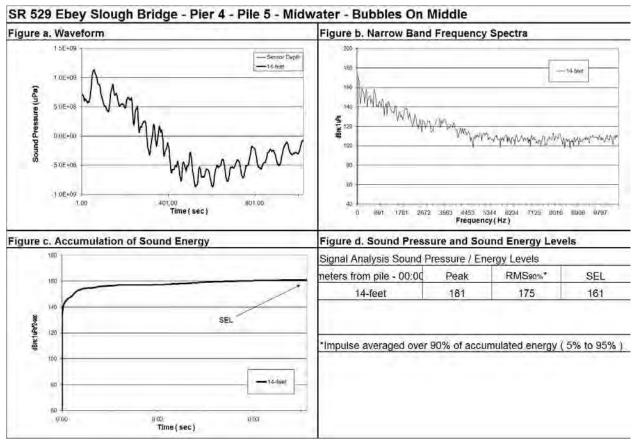


Figure 32: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater.

Pier 4, Pile 5 – with Bubbles OFF Middle of Drive

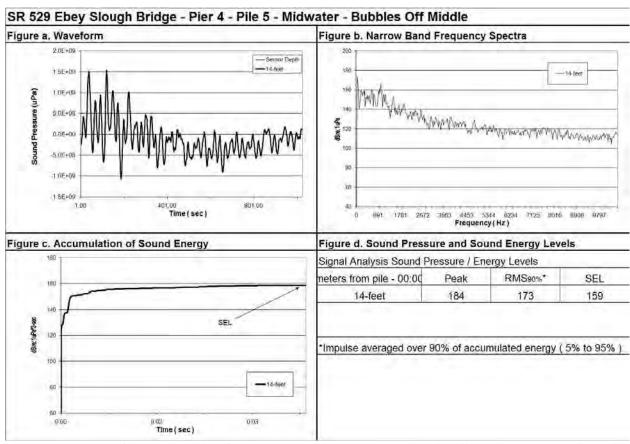


Figure 33: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater.

Pier 4, Pile 5 – with Bubbles ON End of Drive

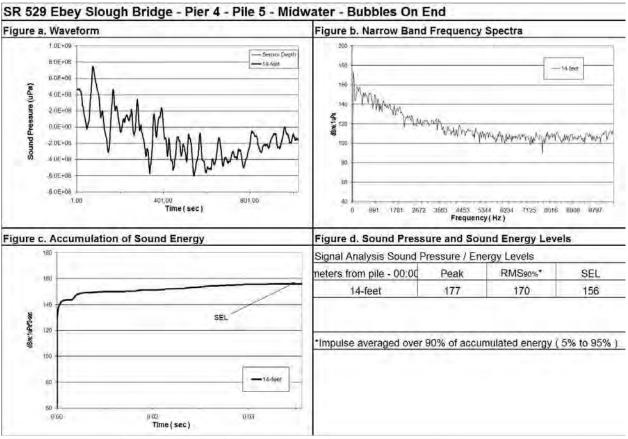


Figure 34: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater.

Pier 4, Pile 5 – with Bubbles OFF End of Drive

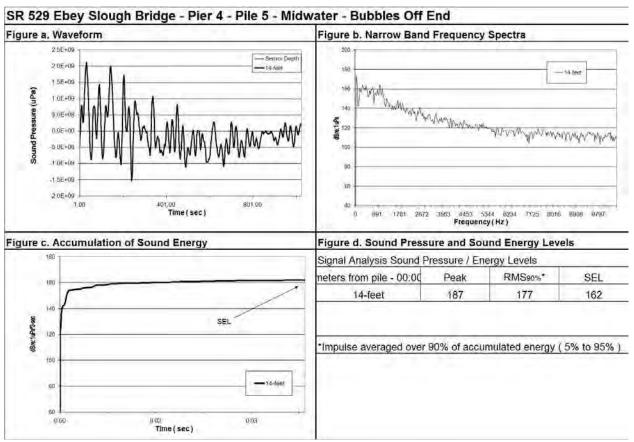


Figure 35: Waveform analysis of Pile 1 sound pressure levels with first and second ring air on, midwater.

Pier 4, Pile 6 – with Bubbles OFF Start of Drive

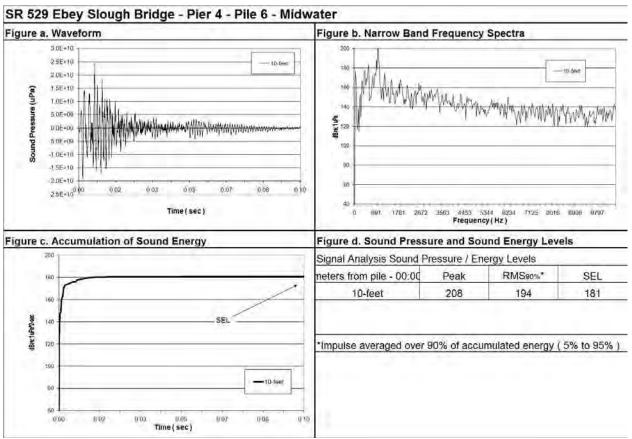


Figure 36: Waveform analysis of Pier 4, Pile 6 sound pressure levels with bubbles off, midwater.

Pier 4, Pile 6 – with Bubbles On Start of Drive

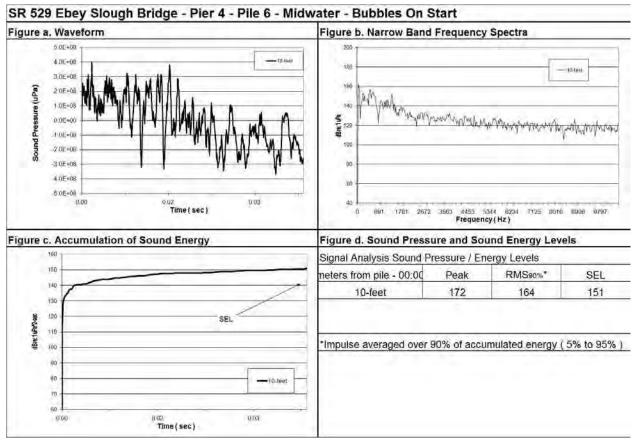


Figure 37: Waveform analysis of Pile 1 sound pressure levels with all rings on full for the second time near the end of the drive, midwater.

Pier 4, Pile 6 – with Bubbles OFF End of Drive

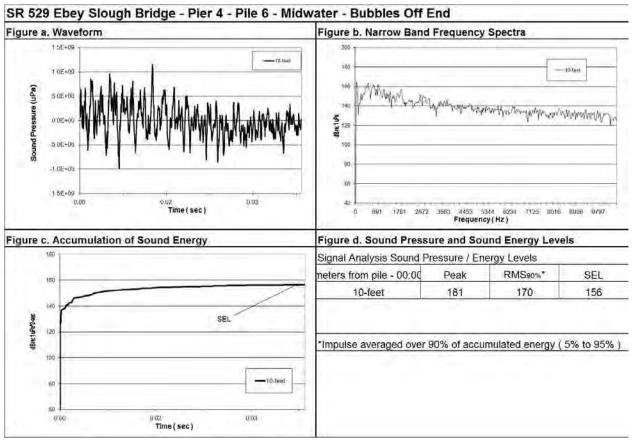


Figure 38: Waveform analysis of Pile 1 sound pressure levels with all rings off at the end of the drive, midwater.

Pier 4, Pile 6 – with Bubbles On End of Drive

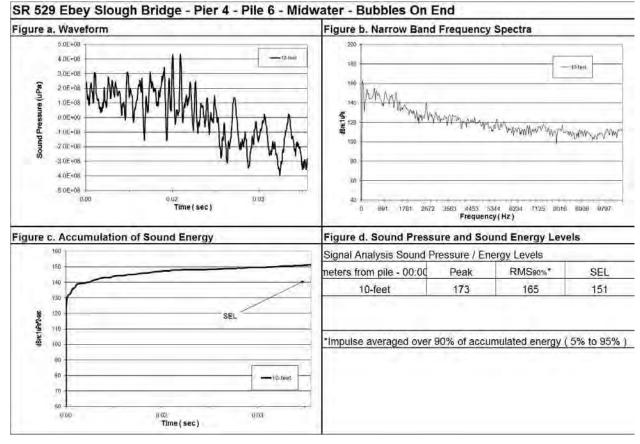


Figure 39: Waveform analysis of Pile 2 sound pressure levels with all bubbles off initial, midwater.

APPENDIX B- PILE DRIVING LOGS

	1948					, ,	(TEST	7	11/			Note	-		
Structure	1100 0				111		, 11/10	110	16/5	38 71	NING 1	UTICEABLY	HARDOR		
Location P	- 600 SUPER	kurc			Off Ele									-	
Hammer				Grou	nd Ele	v. '/	6		11/10	10-	LSED	D/00	010500	V NIUM	or
S/N				Fina	Tip E	ev.									
Ram Wt.	_ //		_	Leng	th in L	ead			100						
Pile Type 7				Cut	Off										
Inspector 1					Lengh					-	-			·	
Depth?	Time	BPF	BPI	STK	BPM	С	Ult. Rest.	Tip Elev.							
124,4	1453	_					-								
125,4	1457								-						
126,4	1502	<u> </u>					'								
127.4	1507	<u> </u>													
128.4	1511	<u> </u>													
-127,9	1511-15/	51	UPP	0 1	U (//	rck	NAMMO								
-128-4	1518	TIM										-	•		
-128.4	1521														
-1Z9,4	1538		<u>.</u>												*
130,1	1602 5	JUPP	w				, , , , ,								
	1449	11/1	0//	4	star	eV	m/D	100						1	
130.4	1456	67							1					4 9	te ș
1311,4	1458	65	_						7000					5 ·	¥ 13
132.4	1459	60		_	<u> </u>				Sec. 1				٧.		
133.4	1500	55		_					dates				7.0	*:	- 31
134.4	1501	51							25/24/2		-		1.7		- 11
135.4	15 03	52	_						-						
- 136.4	1504	51											-		\$ 9.
-137.4	1506	47							ğ				····		4
DOT Form 450-										orm 450-004 tevised 08/20					

Contract	7948				No.			PILE)			-2-	Note	es		1 * .	
Structure				Date	11/	10/2	2010				٠.					
Location P	15R Z			Cut	Off Ele	v.									-	
Hammer D	100			Grou	ınd El	ev.	7.6			· ·					V., .	7.5
S/N				Fina	l Tip E	lev.										
Ram Wt.	1.			Leng	gth in I	ead					`					
Pile Type 7	12"			Cut	Off	,							-		(4	
Inspector					Lengh					 						
Depth	Time	BPF	BPI	STK	BPM	С	Ult. Rest.	Tip Elev.								
- 138.4	1507	49				L				 				2.57		
-139,4	1509	42	_											-		<u> </u>
- 140.4	1510	45				<u>L</u> ,										1 ,
-141.4	1511	40						-		 				. *		1 1
-142,4	1512	37		_						 -					-	- 1)
-143.4	1513	36		_						 				;	·	4. ~:
-144.4	1514	35												~		1 (.)
-145,4	1516	32					,								· , · · ·) 4.1
-146.4	1517	33		ļ										,		500
-147.4	1518	34		_										÷	t v	*
-148,4	1519	31														1. 1. 4
-149,4	1520	33							-						7.	1
-150.4	1520	34													12.	
-151.4	1521	30							· -							. 2 G*
-152.4	1522	26												1.7		* 1;
- 153,4	1523	22												- 3	to the second	4
-154.4	15 24	26								•						-
-155.4	1525	28														10.00
-15le,4	1526	25									·				*	1-8-24
DOT Form 450											~					

Contract	7948			Pile ì	No. 3	ZA			,	doing.	1	Notes			. 1		
Structure				Date													
Location P				Cut 0	Off Ele	v										٠, ٦	
Hammer D	160			Grou	nd Ele	ev.	7.6			32.1					(C	7	
S/N				Final	Tip E	lev.	_										_
Ram Wt.				Leng	th in L	ead											_
	72"			Cut 0	Off ·					 						71	
Inspector	Randy Hoop	er.		Pay I	Lengh	t				 				4.96.0	ψ. (, Γ ,	w.	
Depth	Time	BPF	BPI	STK	BPM	С	Ult. Rest.	Tip Elev.		 							
-157,4	15 27	26														\	_
158.4	1528	25						·		 		-			<u> </u>		
159,4	1529	19															
160,4	1330	24													× ;		
-161.4	1531	21															
-162.4	15 32	23												,			
-163.4	1533	22								 							
-164,4	15 34	24					*. •			 			`				
-165.4	15 35	27															
-166,4	15 36	27															
-167,4	15 37	25														V-1-1-1	
-168.4	1538	25															
-169.4	15 39	25															
-170.4	1540	25															
-171.4	1541	25															_
-172.4	1542	26								,							
-173.4	1543	25								 							
-174,4	1544	22															
- 175.4	1545	29								 							
DOT Form 45									d	 							—

Contract 7	948			Pile		21		- PILC	Notes
Structure 27	357 SLUGH	BA		Date	11/1	0/1	0311/2	2/10	11/22/10 RE-STRIKE ON 11/22/
Location P	ier2			Cut	Off Ele	ev.	/		11/22/10 RE-STRIKE on 11/22/
Hammer D	けつひ			Gro	und Ele	ev. 7	7,6		
S/N				Fina	l Tip E	lev.			
Ram Wt.				Len	gth in L	_ead			
Pile Type	12M			Cut	Off				
	mon house	<i>r</i>		Pay	Lengh	ıt			
Depth -	Time	BPF	BPI		врм		Ult. Rest.	Tip Elev.	-
-176.4	15 46	27							
-177.4	1547	25							
-178.4	1548	25							<u></u>
-179.4	1549	2.5							
-180.4	1550	25							
-181.4	1551	25						,	
-182.4		25	-						
1031	1031-1034	67		91	Fu	R =	711 .1,	1/22/10	
	1035	11		39		7	14.85 Th	111	
	1037	25		40	/	1	1		
					\top		1		
							<u> </u>		

Contract 7	948			Pile	No.	3/	7		Notes
Structure				Date			0 10/22	-10	10/22/60 useel D100-13 NAMMOR
Location /	1ER 3				Off Ele		,		WHEN DRIVING, PDA ECRIPMENT
Hammer AP	o-knak	un 9		Grou	ind Ele	ev. 8	3.61		MTMCNON TO PILE
S/N				Final	Tip E	lev.			
Ram Wt.				Leng	th in L	.ead			11/2/10 cs00 D100-13 NAMMOR U/PDA
Pile Type 7	12"			Cut (Off				
inspector //	6			Pay	Lengh	t			EGUIPMONG FOR ROSTRKE
Depth	Time	BPF	BPI	STK	BPM	С	Ult. Rest.	Tip Elev.	
209,4									
709,9	1110	5/0/	ped		L.				
210,4	1/13	5/102	Y-5	υρρι	1				
210.9	1109-1111	51.	ort/	5006	PED	, /V.	MMER	W	
		155		72		и	. RKING	PROPERLY	
10,9-2169	1921-193	3/							
		202		40					
212,4	1924-1930	319		38					
212,9	1933	PIL	5.4	ent	05	-	PDA LI	-OFF PILE	
		11.	2/	0					
	0838-0840	8	13	ow	s - /	212	- WENT	1811	'
					_				
		<u></u>		_					
				ļ			ļ		
			_						
			<u> </u>	_	_				7
							<u></u>		
DOT Form 450-	204								DOT Form 450-004

				4	A				
Contract	7948			Pile N	No.	4A			Notes
Structure 4	9864 SLOUGH 1	3/		Date	1/3	/11.	1/6/11		
Location	PIER 4			Cut C	Off Ele	v			
Hammer	Supon Kon 6			Grou	nd Ele	ev.			
S/N				Final	Tip E	lev.		,	
Ram Wt.	.,			Leng	th in L	.ead			
Pile Type	72"			Cut C	Off				
Inspector	0			Pay l					ţ
What -Depth	Time	BPF	BPI	STK	BPM	С	Ult. Rest.	Tip Elev.	
180	1623								
185	1823					_			
Ten 187	1624	ļ	-	PROS	2 7	8	SPLICE		
	1530		ST	WI		6/1	SUPER		•
180	1533	ऻ—	_		_				
185	1536		<u> </u>	-					
190	1539	+		-					
195		-		-			-		
260	1542	-		-	-		-	-	
205	1543	-	-	-		-	-	-	
210	1545	-		-					
		-							
720		+	-	+	-	-			, , ,
	1548	+-	+	+-	\vdash		<u> </u>		
235		+	-	PPL	10				
237,4	1550	+-	707			6/11	USOD J	(2/1/2)	
238	1709	87	112	4/_	38	-	2000	15/00	<u> </u>
2 ファ	1713	125	_		39	-	-		

Contract	7948			Pile	No.	44			, , Notes
	3ct scus	IK BR		Date	1/	6/1	, , , , , , , , , , , , , , , , , , ,		Notes 1/7/11 - TOP OF TEMPLATE /7.4' PILE AT 248.3' MARK AT TOP
Location P	15R4			Cut	Off Ele	v.			PILE AT 248.3' MARK AT TOP
Hammer Af-	D-1	ω		Grou	ınd Ele	v.			OFTEMPLATE
S/N				Fina	l Tip El	ev.			
Ram Wt.				Leng	gth in L	ead			
Pile Type				Cut	Off				,
	100	T			Lengh		T		
239.4	Time	BPF	BPI	STK	BPM	С	Ult. Rest.	Tip Elev.	
237,4	1714	72	-		40			-230,9	
-			-	-					
		-		-					
		_							
		-							
		_		-					
		1	-						
		-	<u> </u>						
		1							
+									
-				 					
			-						
						-			

Contract	7.948			-	No.4	$\overline{}$	(10)	126)	Notes
Structureとろと	T SCUGH	BR		Date	12	/30	1/10,1	/4//	/	
Location	PIERY			Cut (Off Ele	V.				1/4/11 LSED D-100 DIESEZ NAMMOR
Hammer Si	UPER KU	4		Grou	ınd Ele	ev				MISTER 11' DOWN FRUM TOP OF TEMPLATE
S/N				Fina	l Tip E	lev.				
Ram Wt.	n = 71			Leng	th in L	.ead				1/2/11 - TOP OF TEMPLATE 17.4'
Pile Type	72"			Cut	Off					243.4' MIRK AT TOP OF TEMPLATE
Inspector				_	Lengh	$\overline{}$				
ANTE Depth	Time	BPF	BPI	STK	BPM	С	Ult. Res	t. T	ip Elev.	
188'	1133	ļ		ļ				_		
189'	1134	ļ .	<u> </u>	<u> </u>						
190'	1135	-	_	_	_			4		
195	1139	-			_	,		+		
2001	1141	ऻ		_				\perp		
2051	//43	-		<u> </u>				\perp		
210'	1145	-	·	_			<u> </u>	-		
	1146	-	_	_	_			-	Special	
220'	1147	-		-				+		
725'	1148		_	┢	-		<u> </u>	-		
230'	1149	-		ļ	-			_		<u> </u>
2357	115/	-	-	-	-			+		
2401	1151	-		1						
243'	1152	-	-		//	_		_		
233'	0840	574	ZT-	//	4///	1—		+		
233.5	0903	905	-	-	39	-		-	226.0	
233.5	0910-0911	35	-	-	38			-	226.0	
		-		-				-		

Contract	7948		†		No. 4	C	Ctrest PI	IE)				1	Votes					
	ET SCUER Y	3rc		Date	12/	28/	10 1/4	Ki		1/4	/i/ ~ .	LSOD ;		77/6	2562	NAMI	nal	
Location 2	75R4.			Cut 0	Off Ele	v.			*									<u> </u>
	PER Kung	ĵ.		Grou	ind Ele	ev.			水弧	11	11	12.5 12,6°	1 1	1 1	29 7	0,0,	1	_
S/N				Final	Tip E	lev.						12,0						_
Ram Wt.				Leng	th in L	ead												_
Pile Type	72"			Cut (Off													-
Inspector	N	,		Pay	Lengh	t												_
Depth Depth	Time	BPF	BPI	STK	BPM	С	Ult. Rest.	Tip Elev.										_
187	1536	ļ																_
188	1537	_		_											· ·			_
189,	1538							<u> </u>										_
150	1539						20.1											-
195	1344	1	-	↓				ž.										_
200	1547	1	ļ	-														-
205	1550	+-	<u> </u>										`					_
210'	1553	-		-				- 1										_
215	1/553	-	-	-														_
770	1556						-											_
225	1557	-		-			-											_
2301	1558	1	1	-		_												_
235'	1559	-	-															_
245		-	-	-		_	-											_
2471	1601	+-	ppe	_	-			· ·										
234.5	1005	-		7	,													
£235	1017	222		1/4/	38			-229,6									-	
グラムフラ	1011	5	-		39 37			-229,6										

Contract /	1946			Pile	No.	40			Notes
	357 SLUCH	BR		Date	1/	4//	/		# 1/4/11 - UNTOL LOVEZ 12.6' FROM
Location /	75R 4			Cut	Off Ele	v.			TOP OF TEMPLATE
Hammer 2	1-/00			Gro	and Ele	ev.			703
S/N	,			Fina	l Tip E	lev.			1/7/11 - TOP OF TEMPLATE ELEVATION 1709
Ram Wt.				Leng	gth in L	.ead		_	248.5 MARK UT TOP OF TEMPLATE
Pile Type	72"			Cut	Off				276, 5 MARCH 21 707 67 704 POST
Inspector 1	P			Pay	Lengh	t			
Depth	Time	BPF	BPI	STK	вРМ	С	Ult. Rest.	Tip Elev.	
236	1023	235			37			-230,6	
€ <u>Z36.5</u>	1030	270	_	_	38		DOPPES	D-2311	
				<u> </u>					
		_							
				_		L			
-		+		<u> </u>					
		-	_	ļ.,					
	-	-		-					
		-		_			-		
	-	+-	-	-					
		+-	-	\vdash					
-		+	-	-	-	_			
	-	-	-		ļ.,			<u>-</u>	
		-	-	-	-				-
			_	\vdash	-	_			
			-	-	-	_		-	
		_	\vdash	-	-		-	 	·
		-	-	-	-		-		
			\perp	<u> </u>		L			

		4 [)					0	
Contract	7948	•		Pile	No.	77			Notes
Structure &	BEY SLOUGH	H 130		Date		2/1	/	3	* TEMPLATE WITH MUT OLOW - 18.7"
Location	PIER 4				Off Ele	v.			- 12MPLA/6 WITH MA/ ELEV - 18,1
	PER KWG	ī			and Ele				KER TEMPLETE W/U MIT EZEU - 17,4'
S/N					l Tip E		•		
Ram Wt.				Lend	th in L	ead			- MISTER LOUEL - 9.8 FRLY TEMPLETS
Pile Type	72"			Cut	Off				
Inspector	MA			Pay	Lengh	t		. –	1/7/11 - TOP OF TEMPLATE 17.4'
2424 Depth	Time .	BPF	BPI	_	вРМ	С	Ult. Rest.	Tip Elev.	PILO AT 247,8 MARK IT TOURING
186.5	1310		57.	net	1/6	///			
188	1313							_	
189	1314								
190	1315							-	
195	1320					-			· .
700	1323								
205	1326								
210	1328								
715	1329								
720	1330								
225	133/	T .							
230	1332			Ī					
235	1334								
240	1335								
245	1336								
× 246.8	1337		,	TOP	POD				
18x 235,8	1644			STU	U	u	0-10	0	
236	1645	27			37			228,4	
237	1648	111			38		_	229.4	
DOT Form 45 Revised	0-004 08/2008								DOT Form 450-004 Revised 08/2008

Contract 7	948			Pile	No.	17).		Notes
	354 5606	N BR	_		1/6				Notes
Location P	10R 4			Cut	Off Ele	v.			· · · · · · · · · · · · · · · · · · ·
	E D-100)			ınd Ele				
S/N				Fina	l Tip El	ev.		ì	,
Ram Wt.				Leng	yth in L	ead		- 1	•
Pile Type	12"			Cut	Off				
Inconder to	NO			Pay	Lengh				
Depth	Time	BPF	BPI	STK	врм	С	Ult. Rest.	Tip Elev.	
238	1652	143			39			-230,4	
		_							
		_							
		-							
		-						-	•
		+			-				
-	-	+					<u> </u>		
		+		-	-		-		
		-						<u> </u>	
		+	-	_	\vdash				
		+			-				
		+			\vdash				
		+							
		+	+-	_	+		-		
		+	-		-	_			·
	-	+-	-	-			-		
-			†	-					
	1			L	L		1		·